Final Version - 3/16/04

Associate of Arts in Secondary Teaching Content Area: **Chemistry**

There has been a significant national reform movement in science education in the United States over the last decade. This reform has emphasized the fundamental importance of science literacy for a vibrant society, the need for students at all levels to be able to use scientific principles and processes meaningfully, and the critical role of the student in the learning process (constructivism). Standards and plans for action have been delineated in the documents <u>National Science Education Standards</u> (1996) and <u>College Pathways to the Science Education Standards</u> (2001).

The outcomes listed below address the following national standards for students and teachers of chemistry:

A) National Science Education Standards

Content Standards in Chemistry K-12 Professional Development of Teachers of Science: Standard A

B) National Education Technology Standards for Students: 2, 3, 5, 6

The outcomes include all information required for the Praxis II Subject Assessment in Chemistry.

OUTCOMES	INDICATORS	ASSESSMENT TYPE	SAMPLE ASSESSMENT TASKS
Teacher candidates will be			
able to:			
1. Make measurements and express those measurements in	a) Make measurement;b) convert measurements	Short answer Problem solving	1. Convert 3.2 lb/gal to g/mL.
common and metric units; manipulate units	between systems	Performance	2. Given an object, determine its mass and volume and express the resulting density in units other than those measured.
2. Understand and apply significant figures and exponential notation to measurement	a) Correctly express numbers in scientific notation with appropriate significant figures	Short answer Performance	1. Given an object, determine the mass and volume and express the resulting density in units other than those measured. Answer must be expressed to the correct number of significant figures and in exponential notation.

OUTCOMES	INDICATORS	ASSESSMENT TYPE	SAMPLE ASSESSMENT TASKS
Teacher candidates will be			
able to:			
3. Understand nature of science and scientific investigation	a) Design, conduct, evaluate and/or interpret a scientific investigation	Essay	1. You are presented with the question, "Does the volume of a gas depend on its temperature?" Determine how you might answer the question in an experimental manner. Include a hypothesis, list of independent, dependent and controlled variables, a basic experimental design and observations that may be anticipated.
4. Distinguish among states of matter; explain behaviors of states based on particulate nature	a) Identify state; b) givecharacteristics of each state;c) explain behavior of state	Short answer Essay	1. In the sealed flasks below, using small circles to represent particles, sketch benzene at -10° C (solid) and 25 °C (liquid).
5. Know basic atomic structure; understand historical development of atomic theory and its relationship to spectroscopy	a) Identify characteristics of sub- atomic particles; b) know important contributions to modern atomic theory; c) relate atomic composition to element identification and isotopes; d) relate to modern spectroscopy	Short answer Essay	 Explain what information the gold foil experiment provided about the nature and structure of the atom. Include how the experimental results led to the conclusions obtained. Explain the cause of spectral lines and why they are different for each element.
6. Understand principles of the quantum mechanical model of the atom	a) Recognize types and characteristics of atomic orbitals; b) generate and interpret electron configurations	Short answer	1. What Period 2 element has exactly three p orbital electrons in its shell?
7. Understand the development of and trends conveyed by the periodic table of the elements	a) Use the periodic table to obtain and predict elemental properties such as relative atomic size, ionization energy, electron affinity, and electronegativity.	Short answer Essay	1. If a new element was discovered that should be placed under francium on the periodic table, what would its properties be?

OUTCOMES	INDICATORS	ASSESSMENT TYPE	SAMPLE ASSESSMENT TASKS
Teacher candidates will be			
able to:			
8. Understand the concept of	a) Distinguish between ionic and	Short answer	1. Draw a Lewis dot structure for NO_2^{1-} .
bonding as resulting from	covalent bonding; b) give	Essay	
electron interactions;	example of each type of bond; c)		2. A general statement says that metals and non-
understand bond nature as a	explain why bond character may		metals form ionic bonds. However, MnO_2 has
continuum	not be purely ionic or covalent;		characteristics consistent with a covalent bond.
	d) identify dipole moment in		Explain why.
	bonds; e) draw Lewis dot		
	structures	D 11 1	
9. Visualize geometries of	a) Predict geometries of	Problem solving	1. Determine the molecular geometry of SO_2 .
theory and hybridization theory	hybridization of atoms in a		2 Skatah CH
theory and hybridization theory	molecule		2. Sketch C114.
10 Determine molecular	a) Determine if molecule has	Short answer	1 Is CH ₂ Cl ₂ a polar molecule? Why or Why not?
polarity as it relates to	dipole moment: b) know types	Problem solving	1. 13 CH2CH2 a polar molecule: Why of Why not?
geometry: understand	of intermolecular forces: c)	r roorenn sorving	2. Explain why methyl ether (CH_2OCH_2) is a gas at
properties dependent on	explain how properties such as		room temperature while ethyl alcohol (CH ₃ CH ₂ OH)
molecular polarity	boiling point and solubility are		is a liquid.
1 5	related to intermolecular forces.		1
11. Understand concept of	a) Identify types of reactions;	Short answer	1. Heat a sample of CuCO ₃ over a Bunsen burner for
chemical change as a chemical	b) recognize process as a	Performance	5 minutes and cool. Based on your observations,
reaction; know types of	chemical change		determine if the change is chemical or physical.
chemical reactions			Explain your reasoning.
12. Understand chemical	a) Write formula for chemical	Short answer	1. Complete and balance the following chemical
nomenclature	compounds; b) write names		equation:
	from formulas; c) write and		$AgNO_3(aq) + BaCl_2(aq) \rightarrow$
	interpret chemical equations;		
	d) balance chemical equations		

OUTCOMES	INDICATORS	ASSESSMENT TYPE	SAMPLE ASSESSMENT TASKS
Teacher candidates will be			
able to:			
13. Understand the mole	a) Calculate molar mass, moles,	Problem solving	1. $C_3H_8O_2 + O_2 \rightarrow CO_2 + H_2O$
concept and stoichiometry	empirical formulas, %		
	composition, mole ratios,		If you start the above chemical reaction with 50.0 g
	number of particles; reactant and		of $C_3H_8O_2$ and 75.0 g of O_2 , how many grams of
	product amounts		water could be produced? If you obtain 27.0 grams
			of water, what is the % yield?
14. Know characteristics and	a) Calculate concentration	Short answer	1. Determine the molarity of a solution made by
processes of solutions	(molarity, molality, % solution,	Problem solving	adding 35.5 g of Na_2SO_4 to enough water to form
	etc); b) explain processes of	Essay	750 mL of solution.
	dissolving a solute; c) explain		
	the interactions between solutes		2. You have a 1.0 M solution of NaCl and 1.0 M
	and solvents, d) use solubility		solution of $CaCl_2$. Explain now the boiling point of the NaCl solution compares to the boiling point of
	nroportios		nurs water and the CeCl, solution and why
15 Vacuur abusised and	a) Identify acids and bases	Short or survey	pute water and the $CaCl_2$ solution and wity.
15. Know physical and	a) Identify acids and bases;	Short answer Droblom solving	1. Calculate the pH of a 0.023 M solution of HCI.
and bases	abaractoristics of acids and	From Solving	2 Explain how the biggrhangte gerhanic agid buffer
and bases	bases: b) know different	Essay	2. Explain now the blearbonate-carbonic actu burler system maintains pH upon a) addition of an acid and
	definitions of acids and bases: c)		b) addition of a base
	calculate and interpret pH for		b) addition of a base.
	weak and strong acids and		
	hases: d) explain huffer systems		
	and calculate pH of buffer		
	systems		

OUTCOMES	INDICATORS	ASSESSMENT TYPE	SAMPLE ASSESSMENT TASKS
able to:			
16. Understand reaction equilibria	a) Identify characteristics of a variety of equilibrium system including Le Chatelier's principle; b) calculate K and equilibrium concentrations	Short answer Problem solving Essay	 Given the K_b for ammonia, calculate the pH of a 0.10 M solution of aqueous ammonia. Consider the following equilibrium system: N₂ (g) + O₂ (g) ↔ 2 N₂O (g) Explain what happens to the concentration of N₂O when: a) pressure is doubled by halving the volume b) N₂ is added c) O₂ is removed
17. Understand interactions of matter and energy	a) Explain the effect of absorption or release of energy on a system	Short answer Essay	1. Why does a hydrogen atom absorb only certain wavelengths of light? What happens when this absorption occurs?
18. Understand concept of heat exchange in physical and chemical systems	 a) Employ specific heat and ΔH of a material to calculate heat transfer; b) apply calorimetry to measure heat exchange; c) interpret phase diagrams and heating/cooling curves 	Short answer Essay Problem solving Performance	1. Using a coffee cup calorimeter , determine the specific heat of a metal.
19. Interpret thermodynamics of a chemical system	a) Be able to calculate and use ΔH , ΔS , ΔG , K to characterize a reaction	Problem solving Essay	1. The net reaction for the corrosion of iron is: 4 Fe (s) + 3 O ₂ (g) \rightarrow 2 Fe ₂ O ₃ (s) From the data below, calculate the equilibrium constant at 25°C. Substance ΔH^{o}_{f} (kJ/mol) S° J/K mol Fe ₂ O ₃ (s) -826 90 Fe (s) 0 27 O ₂ (g) 0 205

OUTCOMES	INDICATORS	ASSESSMENT TYPE	SAMPLE ASSESSMENT TASKS
Teacher candidates will be			
able to:			
20. Understand components, structure, and function of an electrochemical cell	a)Identify components of a cell; b) distinguish between galvanic and electrolytic cells; c) calculate cell EMF and apply Faraday's law; d) balance redox reactions	Short answer Problem solving Essay Performance	1. On the cell illustrated, label the components. Determine the direction of electron flow and the cell EMF.
21. Know nuclear reactions, including radioactivity, fission and fusion	a) Interpret, complete nuclear reactions; b) know characteristics of nuclear emissions; c) use concept of half-life to calculate half-life or residual amounts; d) know environmental sources of radioactive emissions	Short answer Essay Problem solving	 Complete the following nuclear reaction: + ⁴₂He → ²⁴³₉₇Bk + ¹₀n The half-life of phosphorus-32 is 14.3 days. What mass of P-32 is left after 35.0 days from an original sample of 175 mg of Na₃³²PO₄?
22. Interpret kinetics for a chemical system	a) Determine rate constant and rate law from experimental data;b) determine reaction order and relate this to reaction mechanism	Short answer Problem solving Essay	 Explain why the rate of a reaction increases as temperature increases. Using the data for initial reactant concentrations and measured initial rates for the trials listed, determine the rate law for the equation provided. Is the following mechanism consistent with your rate equation? Explain.

OUTCOMES	INDICATORS	ASSESSMENT TYPE	SAMPLE ASSESSMENT TASKS
Teacher candidates will be			
able to:			
23. Know the structure,	a) Identify a functional group;	Short answer	1. Identify the functional groups in taxol.
function, and nomenclature of	name molecules based on	Essay	
functional groups	functional group; b) know structure of organic molecules based on functional group		
			2. Draw the structure of 3,3-dimethyl-4-
			oxohexanoic acid.
24. Understand free-radical	a) Write a mechanism for a free	Essay	1. Write the mechanism for the free-radical
reactions.	radical chain reaction; b) explain	Short Answer	destruction of ozone in the stratosphere.
	the selectivity of a free radical		
	reaction.		2. What is the major product seen in the free radical
			bromination of 2-methylpropane? Explain.
25. Interpret reaction	a) Write a mechanism for a	Problem solving	1. The reaction of cyclopentyl bromide with sodium
mechanisms	specific reaction such as $S_N 1$,	Essay	cyanide to give cyclopentyl cyanide proceeds faster
	$S_N 2$, E1, Diels-Alder		if a small amount of NaI is added. Suggest a
			reasonable mechanism to explain the catalytic
			function of the NaI.

OUTCOMES	INDICATORS	ASSESSMENT TYPE	SAMPLE ASSESSMENT TASKS
Teacher candidates will be			
able to:			
26. Understand principles of	a) Discuss how bonding and	Short answer	1. Generate the energy versus dihedral angle graph
stereochemistry	electron pair geometry affect	Problem solving	for single bond conformations of butane.
	molecular rigidity and	Essay	
	flexibility.		2. Which molecule is the least stable (has the highest
	b) identify chiral centers,		energy) <i>cis</i> -1,3-dimethylcyclohexane or <i>trans</i> -1,3-
	enantiomers, diastereomers,		dimetnyi cyclonexane. Explain
	absolute configuration:		3 What is the configuration of the product of the
	d) determine configuration		reaction of bromine with <i>cis</i> -2-pentene?
	based on reaction mechanism		reaction of cremine white cas 2 pendene.
27. Understand spectroscopic	Interpret infrared, UV, proton	Short answer	1. Given the proton NMR spectrum, ¹³ C NMR
principles for structure	and ¹³ C NMR, and mass	Problem solving	spectrum, mass spectroscopy peaks, and IR
determination	spectroscopy spectra to	Essay	spectrum, determine a reasonable structure for your
	determine molecular structure	Performance	unknown.
			2 Given the relative % intensities of the MS
			2. Orven the relative 70 intensities of the Mis
			unknown (CH-CH-Br is an example)
28 Understand electrophilic	a) Beginning with appropriate	Problem solving	1 Predict the major and minor products resulting
addition reactions in alkenes	starting material show the stens	Performance	from the dehydration of 1 2-dimethylcyclohexanol
and alkynes.	to make alkenes and alkynes:	Essay	
	b) use appropriate reagents to		2. Starting with 1-hexyne, outline the syntheses of 2-
	convert alkenes and alkynes into		hexanone and hexanal.
	other functional groups		

OUTCOMES	INDICATORS	ASSESSMENT TYPE	SAMPLE ASSESSMENT TASKS
Teacher candidates will be			
able to:			
29. Understand principles of organometallic chemistry.	a) Outline a Grignard synthesis;b) use butyl lithium or LDA as a base or as a synthon	Problem solving. Performance Essay	 Design and execute the synthesis of 2-methyl-2- hexanol using a Grignard synthesis. What is the major product of the reaction of 2- cyclopentenone and butyllithium? Predict the major product of the reaction of LDA
			with 3-methyl-2-butanone at (a) 78°C and (b) 250°C, followed by reaction with methyl iodide at the same temperature and EXPLAIN your answers.
30. Understand oxidation/reduction reactions of organic molecules.	a) Recognize oxidation states of organic molecules; b) Design syntheses using oxidation or	Problem Solving Performance Essay	1. Outline the mechanism of the sodium borohydride reduction of cyclohexanone.
	reduction of organic molecules		2. What is the starting alkene if the products of oxidative cleavage using ozone/dimethylsulfide are pentanal and acetone, what is the starting alkene?
			3. Beginning with 1-hexanol, outline the synthesis of hexanal.

OUTCOMES	INDICATORS	ASSESSMENT TYPE	SAMPLE ASSESSMENT TASKS
Teacher candidates will be			
able to:			
31. Understand principles of	a) Determine aromaticity/non	Problem Solving	1 .Identify which of the following compounds is
aromaticity and the reactions of	aromaticity/antiaromaticity of a	Performance	aromatic: cyclobutadiene, cyclopentadienyl anion,
conjugated systems.	system; b) understand and utilize Diels Alder reaction for	Essay	pyran
	synthesis; c) understand describe		2. Predict the major product of the reaction of tert-
	mechanism of electrophilic		butyllithium with 1-methylcyclopropene.
	direction influences of		3. Show a Diels-Alder route to 4,5-
	substituents; d) understand and		dimethylcyclehexene.
	utilize allylic substitution and		4 Outling the machanism of the formation of 4
	1,4- addition		bromoacetanilide from acetanilide with bromine and
			iron.
32. Design and carry out	a) Starting with a reactant show	Problem solving	1. Outline a synthesis for the conversion of the 1-
multistep syntheses	steps to achieve product;	Performance	butyne to 3-hexanone. Include all necessary
	b) complete a laboratory		reagents. Show the structures of all intermediate
	multi-step synthesis		compounds. Show the retrosynthetic analysis of the
33 Recognize and characterize	a) Identify carbohydrates	Short answer	1 You are given an unknown that could be a
biologically important	proteins and amino acids lipids	Performance	protein lipid or carbohydrate. Using laboratory
molecules	nucleic acids; b) know		tests, determine what the unknown is. Document
	classifications, and functions of		your results and justify your conclusion.
	biomolecules		

OUTCOMES	INDICATORS	ASSESSMENT TYPE	SAMPLE ASSESSMENT TASKS
Teacher candidates will be			
able to:			
34. Carbonyl group chemistry, including alpha substitution reactions and enol condensations.	a) Predict the products of the reactions of common nucleophiles with the carbonyl group of aldehydes, ketones and carboxylic acid derivatives. b) predict the products of substitution and aldol-type reactions at the carbon alpha to the carbonyl group of aldehydes, ketones and	Problem solving Performance Essay	 Show how the alpha and beta forms of glucopyranose can be interconverted in solution. Show how glucose can be converted to fructose in a solution of weak base.
35. Amine Chemistry	a) Know the methods of synthesizing the amine functional group. b) account for the basicity and nucleophilicity of amine chemistry	Problem solving Performance Essay	 Show two methods to synthesize sec-butylamine. Explain why the isoelectric point of lysine is at a pH of about 9.
36. Polymer Chemistry	a) Know how to classify polymers as chain-growth, copolymers or, step-growth polymers. b) know how to classify based on physical properties	Problem solving Performance Essay	1. Explain the use of the Ziegler-Natta catalyst in alkene polymerization.
37. Utilize tools for the collection of data	a) Prepare samples and use appropriate equipment to collect data. Equipment should include spectrophotometer, pH meter, volumetric glassware, IR, GC, analytical balances, melting point apparatus, software packages	Performance	1. Using a visible spectrophotometer, determine the absorbances of a series of standards and unknowns.

OUTCOMES	INDICATORS	ASSESSMENT TYPE	SAMPLE ASSESSMENT TASKS
Teacher candidates will be			
able to:			
38. Analyze and interpret	a) Draw appropriate conclusion	Problem solving	1. Determine the concentration of a colored unknown
experimental data	from analyzed data	Performance	using concentrations and absorbances of standards.
			2. Using a spreadsheet or statistical application and
			empirical data, explore the relationship between two
			variables affecting a system. Give a reasonable
			explanation for what is occurring in the system.
39. Demonstrate safe	a) Use safe laboratory practices	Short Answer	1. Identify the location and purpose of all safety
laboratory practice		Performance	equipment in this laboratory.
			2. May be assessed by assigning points for
			adherence to correct laboratory behavior such as
			wearing eye protection, disposing of chemicals
			correctly, nandling glassware and other equipment
			safely, following instructions carefully.
40. Demonstrate basic	a) Use basic techniques such as	Performance	1. Given a mixture, separate and purify a mixture
laboratory techniques	solution preparation, distillation,		using appropriate laboratory techniques.
	titration, recrystallization,		
	filtration		
41. Know and understand the	a) Use principles of chemistry to	Essay	1. At the completion of an experiment you are
relationship of science to other	address topics of significance to		required to dispose of all materials in properly
human values and endeavors	society		labeled containers. Explain the possible impact of
			pouring the materials down the drain.

Additional Notes:

1. To become a teacher of chemistry at the secondary level, a candidate must meet the requirements for the completion of a bachelor's degree in chemistry. During the first two years of study for this degree a student is expected to meet the above outcomes. These will be met if a student successfully completes General Chemistry I and II (8-10 credits) and Organic Chemistry I and II (8-10 credits). However, it is important that an academic institution review its General Chemistry and Organic sequences to ensure these outcomes are addressed. Survey courses in General or Organic chemistry will not have the sufficient depth to meet these outcomes.

- In addition to the chemistry outcomes, a candidate for this degree will need to complete the following courses in the first two years: Mathematics: 2 semesters of calculus designed for mathematics, physical science, and/or engineering majors Physics: Track 1: 2 semesters of calculus-based physics (all institutions)
 or Track 2: 2 semesters of algebra-based physics which is acceptable at <u>only</u> the following: Columbia Union, Goucher, Frostburg, Hood, or Towson
- 3. Some academic institutions to which a candidate may transfer require additional chemistry preparation in the form of a one to four credit course in laboratory techniques and/or safety or descriptive chemistry and possibly a biology course. These must be taken in the junior year at the transfer institution.

College Pathways to the Science Education Standards, NSTA Press, Washington, D.C., 2001

National Science Education Standards, National Academy Press, Washington, D.C., 1996

Technology Foundation Standards for All Students, http://cnets.iste.org/sfors.htm, November 2001